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Abstract

Different nonlinearities are only suitable for re-
sponding to different frequency signals. The
locally-responding ReLU is incapable of model-
ing high-frequency features due to the spectral bias,
whereas the globally-responding sinusoidal func-
tion is intractable to represent low-frequency con-
cepts cheaply owing to the optimization dilemma.
Moreover, nearly all the practical tasks are com-
posed of complex multi-frequency patterns, whereas
there is little prospect of designing or searching a
heterogeneous network containing various types of
neurons matching the frequencies, because of their
exponentially-increasing combinatorial states. In
this paper, our contributions are three-fold: 1) we
propose a general Rectified Continuous Bernoulli
(ReCB) unit paired with an efficient variational
Bayesian learning paradigm, to automatically de-
tect/gate/represent different frequency responses; 2)
our numerically-tight theoretical framework proves
that ReCB-based networks can achieve the optimal
representation ability, which is O (m"/ dz) times bet-
ter than that of popular neural networks, for a hidden
dimension of m, an input dimension of d, and a Lip-
schitz constant of 7; 3) we provide comprehensive
empirical evidence showing that ReC5-based net-
works can keenly learn multi-frequency patterns and
push the state-of-the-art performance.

1 Introduction

Deep neural networks have led to a series of remarkable break-
throughs. In addition to the deep compositional architectures,
their representational properties depend heavily on the acti-
vation functions. Different kinds of nonlinearities provide
different response characteristics, and are only suitable for
disposing of different frequency signals.

Most activation functions typically used nowadays, e.g.,
Sigmoid and ReLU, are locally-responding (i.e., monotonic),
mimicking the binary activation/inhibition of the Heaviside
function. Locally-responding neurons only altering their states
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in a local range make sense from intuitive points of view: 1)
They are more likely attracted to noticeable/generalizable/low-
frequency features; 2) Monotonic nonlinearity substantially
smoothes the fluctuation of gradient in optimization. This
plays an important role in the success of training deep neural
networks containing hundreds of millions of parameters.

However, it is not nitpicking that their representation ability
is defective. [Tancik et al., 2020; Jacot et al., 2018] compre-
hensively showed that standard neural networks are poorly
suited for learning high-frequency content, a phenomenon
referred to spectral bias caused by a rapid frequency falloff.
[Sitzmann er al., 2020b; Bond-Taylor and Willcocks, 2020;
Sitzmann et al., 2020a] further proved that quasiconvex acti-
vations are incapable of modeling potential information con-
tained in higher-order derivatives of natural signals.

By comparison, globally-responding neurons activated by
periodic nonlinearity, e.g., the sinusoidal function, are able
to adjust their activation/inhibition states dynamically across
the whole feature space. They are considered to be a compet-
itive paradigm offering revolutionary benefits: 1) compactly
characterizing complex high-frequency patterns; 2) precisely
representing implicit high-order derivatives. They have the
potential to reveal input-dependent and long-range character-
istics [Xue et al., 2019; Xue and Wu, 2020].

Nevertheless, they do have some drawbacks. As the corre-
lation with the input increases, the state of nonlinearity will
fluctuate between stronger activation and weaker inhibition,
and thus is inappropriate to represent low-frequency concepts
cheaply. Moreover, the periodic sinusoidal mapping has in-
finite Vapnik-Chervonenkis (VC) dimension leading to the
optimization dilemma that the solution space has numerous
poor and dense local minima [Parascandolo et al., 2017]. Con-
sequently, the improper use of globally-responding nonlineari-
ties probably leads to extra complexity and severe risk.

Therefore, despite the relatively vacuous uniform approx-
imation theory, there is actually a gap between the repre-
sentational properties of neural networks and the frequency
characteristics of practical tasks. On the one hand, differ-
ent nonlinearities with relative merits are only suitable for
processing signals with different frequencies. On the other
hand, nearly all the practical tasks are composed of complex
multi-frequency patterns.

Ideally, the nonlinear mappings in hidden layers can be
regarded as the approximate decomposition of some implicit
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Figure 1: The results on fitting sin(2z), z € [—2m, 27], and the corresponding optimization traces in solution space.

functions. Each computational element in networks should be
compatible with the frequency attributes of these functions.
But realistically, there is little prospect of designing or search-
ing such a heterogeneous network containing different kinds
of neurons matching the frequency of patterns. In addition
to the critical issue in identifying the frequency of implicit
functions, another fundamental bottleneck is the exponentially-
increasing combinatorial nature of 2!°! possible states, where
|o| is the total number of neurons.

Hence, in this paper, we particularly focus on improving the
representational properties of neural networks to compactly
and efficiently learn complex multi-frequency patterns with a
minimal compromise in computational overhead. Qur main
contributions are three-fold:

e We propose a general Rectified Continuous Bernoulli
(ReCB) unit paired with a differentiable variational Bayesian
learning paradigm, to automatically detect/gate/represent dif-
ferent frequency responses from locally/globally-responding
nonlinearities.

e We present a theoretical framework to analyze the representa-
tional properties of locally/globally-responding nonlinearities.
Our main result proves that ReCB3-based networks can achieve

the optimal representation ability, which is O(m"/ d2) times
better than that of popular Re LU-based neural networks, for
a hidden dimension of m, an input dimension of d, and a
Lipschitz constant of 7.

e We provide comprehensive empirical evidence showing that
our theoretical findings are consistent with the practical obser-
vations, and the novel ReCB-based networks can keenly char-
acterize multi-frequency patterns. They impressively outper-
form the related state-of-the-art networks (e.g., ReCB-based
ResNet-20 outperforms plain ResNet-110).

2 Related Work

On the one side, [Tancik et al., 2020; Sitzmann et al., 2020b;
Bond-Taylor and Willcocks, 2020; Sitzmann et al., 2020a]
pointed out that ordinary neural networks activated by locally-
responding nonlinearities are inappropriate to represent high-
frequency features and higher-order derivatives. By compar-
ison, [Mildenhall ef al., 2020; Zhong et al., 2019; Xue et
al., 2019; Xue and Wu, 2020; Ramachandran et al., 2017,

Vaswani et al., 2017; Xu et al., 2019; Kazemi et al., 2019]
further constructed a series of competitive models based on
the globally-responding sinusoidal function for a broad range
of applications.

On the other side, these conceptually-attractive globally-
responding nonlinearities are also well-known for being hard
to train [Xue and Wu, 2020; Parascandolo et al., 2017]. It is
probably responsible for this optimization dilemma that the pe-
riodicity gives rise to numerous poor and dense local minima.
The direction and norm of gradient oscillate continually during
error backpropagation. These globally-responding networks
may be prematurely stuck in local minima, and leave out more
effective error feedback.

To understand these issues intuitively, we conduct a
synthetic experiment on fitting sin(2z),xz € [—2m,27]
with three models defined in Section 5.1: 1) the locally-
responding ReLU; 2) the globally-responding Sin; 3) the
multi-frequency gated ReCB. They have only one neuron
with a scalar weight w initialized at w = 6. The fitting results
and optimization traces are shown in Figure 1. Firstly, the so-
lution space of ReLU is smooth. But owing to the structural
limitation, Re LU can only capture the mean values. Secondly,
in contrast, the solution space of Sin has more poor and dense
local minima. S'in is prematurely stuck in terrible solution and
fits the wrong frequency. Thirdly, according to the projection
of ReCB in the solution space of Sin, ReCB finds the optimal
solution w = 2 and perfectly reconstructs the original function
by rectifying these local minima. Consequently, by accurately
controlling the proportion of locally/globally-responding non-
linearities, we can alleviate the optimization difficulty on the
premise of preserving the structural superiority.

3 Gating Multi-Frequency Patterns

3.1 Multi-Frequency Gated Unit

To characterize the response from locally/globally-responding
nonlinearities for each neuron, a multi-frequency gated unit is
defined by

0.()=200()+(1 -2 0a(), zc{0,1}. (1)
() is a locally-responding activation function, and &(+) is
a globally-responding counterpart. Without loss of general-
ity, we make an innocuous stipulation that 5(-) and &(-) are
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the quasiconvex ReLU and the periodic sinusoidal function,
respectively. Whether the responding preference of o, (-) is
low-frequency or high-frequency is determined by the dis-
crete value of the binary gate z. But it should be emphasized
that the approach is naturally compatible with other activation
functions without modification.

By controlling the proportion of different kinds of nonlinear-
ities, we can dynamically adjust the response characteristics
of mappings for complex multi-frequency patterns. But the
practical optimization under this naive gating scheme is com-
putationally intractable because of the non-differentiability
and the exponentially-increasing combinatorial nature of 217=!
possible states, where |0 | is the total number of neurons.

3.2 Variational Bayesian Learning Paradigm

We propose a more efficient differentiable learning paradigm
to jointly optimize the gates with original network parameters,
utilizing variational Bayesian inference as theoretical basis.

Given some observed data D, a group of random variables
z gating the low/high-frequency responses, and a collection of
activations o, regarded as random variables reparameterized
by z. According to Bayesian inference, a general learning
problem can be defined as minimizing the negative Evidence
Lower BOund (ELBO) —£L(D, 0, z).

_L:(Da Oz, Z) = - / IOg wq(aza z)do'zdz,
q(oz,2)
@)
where ¢ is the approximate posterior over o, and z.
Furthermore, suppose p is a spike and slab prior over o,
and z. It is defined as a mixture of a delta spike at zero and a

continuous distribution over the real line.

p(z) = Bernoulli(p),
p(oz|z =0) =d(02), (3
p(oz|z #0) = N(o,|0,1).

Since the true posterior distribution under this prior is in-
tractable, we let (o, 2) be a spike and slab approximate
posterior over o, and z. —L(D, 0, z) under the spike and
slab prior and approximate posterior can be rewritten as

—L(D,0,,2)

=—Eqy(, .2 [log P(D|o, z)} + KL(¢(02, 2)||p(02, 2)).
C))
We assume that the multi-frequency gated units are indepen-
dent of each other. p and ¢ factorize over the dimensionality
of o, and z in an element-wise way. Furthermore, according
to the chain rule of KL-divergence, we have

—L(D,0,,2)
|°'z‘
= — Eqg(2)q(0. |2 [ 108 P(Dlo2)] + > KL(q(z)|p(z:))
i=1
‘O'Z‘
+Z —OKL (Uzzl Z—O)Hp(azz|zz—0))
‘0'2‘
+> 4z # 0K L(q(0,]2 # 0)[[p(0=]2 # 0)).
i=1

&)
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Since
K L(q(z)|p(2:)) > 0,
KL(q(02,ilzi = 0)[|p(o=,:]2i = 0)) =0, (6)
KL(q(02,ilzi # 0)|lp(os,i]2i # 0)) =

where ~ is a weighting factor for explicitly penalizing the
globally-responding nonlinearities for introducing extra model
complexity and structural risk. We have

—L(D,0,,2)
& 9
> — By(2)q(on|z) [ 108 P(Dlo2)] +7 ) qlzi #0).
=1

As long as we apply a differentiable approximate posterior
q(z|p) allowing for the reparameterization trick z = f(p, €)
over the parameters p, a deterministic differentiable function
f, and a parameter-free noise distribution 7(€), we can refor-
mulate the optimization objective —L(D, o, z) and solve it
by Monte Carlo approximation.

—L(D,o0.,2)
‘o'zl
>~ Eq () [ 10gP(Dlos(pe))] +7>_ alzi # 0lpi), &
=1
|Uz|
~— Zlog]P’ Dlos(p.ey) +7 D alzi # 0lpi).-
k=1 i=1

Crucially, the learning objective is now differentiable with
respect to the parameters p, thus enabling for efficient stochas-
tic gradient based optimization. The parameters of the dis-
tribution over the gates can then be jointly optimized with
the original network parameters. Moreover, the requisite fre-
quency information can also be perceived implicitly during
error backpropagation.

3.3 Rectified Continuous Bernoulli Unit

Based on the differentiable learning paradigm, we further re-
fine the multi-frequency gated units by utilizing a continuously
differentiable distribution allowing for the reparameterization
trick. Assume that we have a continuous Bernoulli random
variable v distributed in the (0, 1) interval with probability
density function g, (v|p) and cumulative distribution function
Q. (v]p). The parameter 0 < p < 1 implies the degree that v
is more likely closer to 1 than 0. We can calculate ¢, (v|p) and
Q. (v]p) in closed forms.

20"(1=p)'~", p=13
qv(v‘p) = {Qtanhl(l—Qp)pv(l—p)l” i ) (9)
1—2p ) p# 2
and
Qultlp) =1 = )
v\ UIp) = v_ \1—w _ .
p’(1 gi)il-w) 17 p#%

Here, we stretch the continuous Bernoulli distribution to the
(&, ¢) interval, with £ < 0 and ¢ > 1, and further bound it in
[0, 1] by applying a min-max rectifier.

v :U(Cié-) +§7

z =min(1, max(0,v)).

(1)
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This would then induce a rectified continuous Bernoulli dis-
tribution serving as a better approximation of the discrete
Bernoulli distribution: 1) the probability mass of ¢;(9|p) on
the negative values, Q;(0|p) is folded to a delta peak at zero;
2) the probability mass on values larger than one, 1 — Qy(1|p)
is folded to a delta peak at one; 3) the original distribution
¢5(0|p) is truncated to the (0, 1) interval. The rectified con-
tinuous Bernoulli distribution includes {0, 1} in its support,
while still allowing for gradient based optimization of its pa-
rameters due to the continuous probability mass that connects
these two values.

Considering g(z # 0|p) = 1 — Q3(0|p), we define the
optimization objective by minimizing the total risk R (D).

lo|

R(D) = —logP(Dlo=) + 7Y _ [1-Qs,(0p:)], (12)
=1
where
-
b O i) — wu\T——=|Pi)- 13
Qi (0ps) Qz(c_glp) (13)

In training, paired with a parameter-free noise random vari-
able € ~ U(0, 1), z can be sampled efficiently.

_1
v =1{ ge2o-1) 1= to1=p) 4
— og(e(2p—1)+(1— —log(1— )

. plogp—log(pl—p) =, p#% (14)
z =min(1, max(0,v(¢ — &) + &)).

In prediction, we apply the following unbiased estimator.

)

N[N

1
EL 1 p=
=9 »
551+ sz P (15)

zZ =min(1, max(0,9(¢ — &) +£)).

The total risk R(D) is a special case of the negative ELBO
—L(D, o, z) by setting the sampling number of K = 1. The
reason for optimizing R(D) is that we focus on efficiently
learning complex multi-frequency patterns under large-scale
network architectures, instead of revealing the uncertainty of
gates. As the training continues, ReCB-based networks can
converge very well even if sampling only once.

4 Theoretical Framework

The main insights in our theoretical results are character-
ized chiefly: 1) The globally-responding networks have the
conceptually-attractive ability in approximating 2m-periodic

p-order Lebesgue-integrable functions, which is O(m"/ dz)
times better than that of popular locally-responding networks,
for a hidden dimension of m, an input dimension of d, and a
Lipschitz constant of 7; 2) ReCB-based networks consisting
finely of different kinds of nonlinearities can also achieve the
theoretically-optimal representation ability; 3) The deep com-
positional architectures can significantly improve the represen-
tational properties by reducing the exponential approximation
errors to polynomial ones.
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4.1 Approximation under Shallow Architectures
Definition 1 (Notation). For p > 1, let ¥ be the space of
2m-periodic p-order Lebesgue-integrable functions L} (R%)

(p is bounded) or 2m-periodic continuous functions Co (Rd)
(p=o0). Let f € V. Define the Y-norm by

Il = [em [ @rae] . ao

Definition 2 (Modulus of Continuity). Let f € W and § > 0.
The 1-order modulus of continuity w(f,0)w of f under V-
norm is defined by

w(f,8)w = sup {|[f(x+A) -
N

f(@)|lw, VYA €RY}.

17
In particular, if f € Lip], satisfies a Lipschitz condition with
a constant of C > 0 and an exponent of n > 0 under V-norm,
then w(f,d)w is bounded by M §".

Theorem 1 (Approximation Bound for NN [5]™"). Let the
shallow globally-responding mapping NN[5]V) =37 &,
where the hidden dimension ism = (A +1)% — 1. Let f € ¥
be the target function. The approximation error under V-norm
is estimated by

inf sup [[NN[5]P —
!

N1 The = D as)

where
2

Vs
D=1+
+2\/&, (f,)\+2

Theorem 2 (Approximation Bound for NN [5]™"). Let the
shallow locally-responding mapping NN gV = 3" &,
where the hidden dimension is m = 46 A\(A + 1)%. Let f € ¥
be the target function. The approximation error under V-norm
is estimated by

inf sup [N N[z]P —
NN

and the remainder ® is

)w- 19)

fH\I/ < Dwy + P, (20)

\[ drm 4o TNP
—4 [ (et )]7 @
I [y (5 ot )] @D
Theorem 3 (Approximation Bound for N'A[o,]"). Let
the shallow multi- frequency gated mapping NNo., |V =
St oL = > Gy + i, 6 where the hidden dimen-
sion is m = my + m;. my and m; are the dimension of ¢
and &, respectively. Let f € U be the target function. The
approximation error under V-norm is estimated by
inf L — < Dw,, + ©
ot " WA =l 2 Dm0,

where 1
:W(ﬁm)% (23)

and the remainder © is
wd  adr[(mg+ 1) —1)(m; +1)
=411 - @ T
X cot [ (my + 1)5 — 1](my + 1)} %
my

(24)
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Corollary 1 (For Lipschitz). Suppose f € Lip/,. We have
inf sup [NN[5]Y — fllw S(Q(m_%)7

NNEO  f
; 1) _ < ==y
ol S VAT — e <O(m 7). as)
: . < —d
ety SN = e <O (7).

These numerically-tight results clarify the power of
NNo.] consisting finely of different kinds of nonlineari-
ties. It can achieve the conceptually-optimal approximation
bound paired with a small remainder [Feinerman and Newman,
1975], if the number of globally-responding elements & is not
significantly less than others.

4.2 Approximation under Deep Architectures

Definition 3 (Compositional Functions [Poggio et al., 2017]).
Let G be a directed acyclic graph (DAG), with the set of source
nodes S and the set of vertexes V. For each vertexv € V, d,
is the number of in-edges of v. Let f be a compositional G-
function defined by the compositional structure corresponding
to G. f is recursively constructed by a class of constituent

Sfunctions { f,}vev layer-by-layer. f, with inputs {fui}fvl
corresponds to v with precursor vertexes {vz} . Hence, f
corresponds to the whole G with |S|- dlmenszonal inputs.

Theorem 4 (Approximation Bound for NN[5]). Follow the
notations in Theorem 1. Let the target function f € ¥ be a
compositional G-function including the constituent functions
{fv € U}lyev. Let the deep globally-responding mapping
NN 5] have the same architecture as G. For each v € V,

let NN [~] (Y correspond to v. The hidden dimension of

NN ] is my = (A, + 1) — 1. The approximation error
under V-norm is estimated by

Wit sup IV = flle < 3 { Do,

veV

d,
+<1 + A +2)> Dviwmi)wxu }
1=1

Theorem 5 (Approximation Bound for N N[7]). Follow the
notations in Theorem 2. Let the target function f € U be a
compositional G-function including the constituent functions
{fv € U}lyev. Let the deep locally-responding mapping
NN 7] have the same architecture as G. For eachv € V,
let NN [5]5,1) correspond to v. The hidden dimension of

NN[&]S}) is my = 4oy Ay (A, + 1)4
error under U-norm is estimated by

(26)

v. The approximation

Jut s NN = flle < 3 {Duor, + @,
veV
dy 7)
+( 1) +2 Dv,w)\ +q)717))
1=1

Theorem 6 (Approximation Bound for N N[c,]). Follow the
notations in Theorem 3. Let the target function f € U be a
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compositional G-function including the constituent functions
{fv € $}yev. Let the deep multi-frequency gated mapping
NN |o,] have the same architecture as G. For eachv € V,

let NNo.]S" correspond to v. The hidden dimension of

NJ\/'[UZ]S}) is my = my, +my,.
under V-norm is estimated by

.f Z < v @’U
s Ao = flle > { Do, +

veV

The approximation error

dy

+(1 + ((my + 1)@ + (Do, W, + @vi))wmv }

z:l
(28)
Corollary 2 (For Lipschitz). Suppose f € Lipl, and {f, €
LiptYyoev.  Let {NN[51S) NN, NN 0.] boer

have the same hidden dimension of m,,. We have

1nf SupHNN — fllw <ZO( d”)
veV
1nf supH./\/'./\/' —flle < Z O( ”H)a (29)
veV
N/i\lfl[fz sup [NNo.] — fllw <§O( )

These results further emphasize that the superiority of
the deeper N'N[c.]| is inherited from that of the shallower
NN[o.]V. ReCB units can improve the representational
properties of neural networks, whether in shallow or deep
architectures.

S Experiments

5.1 Experimental Models

They are denoted by the nonlinearities and gating schemes.

e ReLU: as the baseline of locally-responding nonlinearity.
e Sin: as the baseline of globally-responding nonlinearity.

e Ense: as a weighted Ensemble of ReLU and Sin.

e Para: setting the gates as a group of learnable Parameters.
e Bern: sampling the gates from the Bernoulli distribution.
e ReCo: gating via Rectified Concrete (ReCo) distribution.
o ReCB3: gating multi-frequency patterns through the proposed
Rectified Continuous Bernoulli (ReCB) units.

5.2 Learning Heterogeneous Patterns

The experiment is designed to evaluate the sensitivity of ReCB
units in gating heterogeneous patterns. The implicit patterns
to be learned are represented by a single-layer neural net-
work G with the hidden dimension of 200. G consists of
the locally-responding Re LU and the globally-responding si-
nusoid. The proportion of the sinusoidal elements linearly
increase from 0% to 100%. We uniformly get 20000 samples
{(z,G(x;))}2%90 x; € [—27,27]?°, and randomly divide
them into two non-overlapping training and test sets that are
equal in size. The division, training and test processes are
repeated 5 times, and then we assess the average performance
on Mean Squared Error (MSE). All compared models have
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Figure 2: Learning heterogeneous patterns (left) and frequency-shifting patterns (right).
the same architecture as G, and are optimized by Adam. The Top-1 LeNet-5 ResNet-20 ResNet-56 ResNet-110
. . Error(%) conv best conv best conv best conv best
results are shown in Figure 2.
. . : ReLU 30.63 30.49 8.87 8.76 7.27 7.06 7.41 7.30
. ]'3e51des’the apparent obsejrvatlon, there are two in-depth Sin | 2948 2936 | 115 1135 | - ) ’ )
insights. Firstly, the expectation value of gates is linearly cor- Ense | 2481 2478 | 930  9.02 - -
l d h . f B h Para 29.25 29.16 9.34 9.20 10.61 9.79
related to the proportion of pattern components. Because the Bern | 3415 3379 | 1220 1153 | 962 892
variational Bayesian learning paradigm sensitively captures ReCo | 2543 2543 | 986 789 | 757 665
the changes of components implied in complex patterns, and ReCB | 2347 2319 | 666 652 | 580 564 | 555 554

then feeds the error information back to the gates. Secondly,
ReCB performs much better than ReC'o even though their
gates have the very close expectation value. It is a major
reason that ReCB units concentrate probability mass better
around the extrema, and do not cause too much unpleasant
sampling uncertainty. These properties play a major role in
modeling discrete gating behaviours under stochastic gradient
based optimization.

5.3 Learning Frequency-Shifting Patterns

Furthermore, another experiment is designed to evaluate the
effectiveness of ReCB units in capturing the changes of fre-
quencies. The implicit patterns are also represented by G
consisting of 10 ReLU neurons and 190 sinusoidal neurons.
The frequencies w of these sinusoidal neurons linearly increase
from 0.0 to 0.7 paired with extra noise A/(0,0.12). All com-
pared models have the same single-layer network architecture
containing 500 neurons. The results are shown in Figure 2.

Firstly, the curve slope of ReCB is the flattest, which means
that ReCB has the potential to achieve greater performance
advantages as the frequencies increase. Secondly, the perfor-
mance depends heavily on the distribution characteristics of
gates. Compared to the optimal ReCB, ReCo performs worse
due to its unpleasant uncertainty in sampling process, and thus
is not suitable for gating and optimizing the crucial nonlin-
earities. Lastly, automatically detecting/gating/representing
different frequency responses is not a trivial behaviour mim-
icking random selection. The gate is even as important as
the nonlinearity. ReLU and Sin achieve the worst perfor-
mance in learning the neural network G composed entirely of
themselves.

5.4 Learning Image Classification

Moreover, to demonstrate that various networks can benefit
from the proposed ReCB units, we conduct an experiment
to learn CIFAR10 [Krizhevsky et al., 2009] classification.
All models are optimized by Stochastic Gradient Descent

3599

Table 1: Top-1 error(%) on the CIFAR10 dataset. Conv means the
convergent error in the last epoch and best means the best error in all
epochs. The best results are highlighted in bold.

(SGD) with a mini-batch size of 128, a weight decay of
10~4, and a Nesterov momentum of 0.9 [Paszke et al., 2017;
Sutskever et al., 2013; Goodfellow et al., 2016]. The learning
rate is adjusted by a cosine annealing schedule with warm
restarts [Loshchilov and Hutter, 2016]. The results are col-
lected in Table 1.

In all the experiments ReCB remarkably achieves the best
performance. The top-1 error 6.52% of ReCB-based ResNet-
20 (ReCB) is even more competitive compared with the offi-
cial record 6.61% of ResNet-110 in the publication [He et al.,
2016]. Other models failed to train under the giant ResNet-
110 architecture due to the unsolved optimization dilemma
of the globally-responding sinusoidal nonlinearity, and be-
haved as poorly as random guessing. It suggests that ReCB
units are capable of improving the computationally intractable
optimization of globally-responding elements.

6 Conclusion

In this paper, we propose a novel ReCB unit paired with
variational Bayesian learning paradigm, to automatically de-
tect/gate/represent different frequency responses. A theoret-
ical framework is also presented to analyze the representa-
tional properties of locally/globally-responding nonlineari-
ties. Our main result characterizes that ReC3-based networks
can achieve the conceptually-attractive approximation bound.
Furthermore, we provide comprehensive empirical evidence
showing that ReCB-based networks can keenly learn multi-
frequency patterns.
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